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INTRODUCTION

During the years 1935-87 three lines of magnetic traverse have been carried out by
the Survey of India across the epicentral area of the 1934 Bihar earthquake. The results
have been discussed in Survey of India Geodetic Reports 1985 and 1937. For the interpreta-
tion of such anomalies, a set of profiles is required giving the effects of various forms of
magnetic deposits at different depths. This paper gives formule and curves showing the
variations of the horizontal and vertical magnetic force corresponding to various shapes of
magnetic bodies at various depths. The anomalies also depend on the magnetic dip and on
the orientation of the body with respect to magunetic north, and the corresponding variations
are considered. This problem has been partially considered by Dr. H. Haalck, who has given
gome results in * Die Magnetischen Verfahren der angewandten Geophysik ”, 1927, and these
have been reproduced by A.B. B. Edge and T. H. Laby in *‘ Geophysical Prospecting ”, 1931.
The curves now.given do not entirely agree with Dr. Haalck’s, and it is clear that he has
introduced approximations which have appreciable effects.






MAGNETIC ANOMALIES

1. Magnetic effects of different types of deposits.—()ur problem is to w'ork
out the effects of the magnetism induced in different forms of rock masses by the 1.n¢ngnetlc he:]d
T of the earth. It is well-known, that when a hody llfwing.g.-{reater permeability thflll '1ts
surroundings is placed in a magnetic field, it causes the lm?s of .h)rcu to.crowd toget.hermsu’le';
it. For weak ficlds like that of the earth, the magnetism induced in the body is {=xl,
where « is the magnetic susceptibility of the lmd._v. Tu this .t‘l‘elltv.ll.l(‘llt, we nEuke the funda-
mental assumption that the magnetisin induced in the body s uniform. This does not hold
for crystalline bodies, which arc found to be nmagnetically anisotropie.

The permanent magnetism of the embedded rock masses is ig‘l.l()l‘(.‘d, as very ).it..Hv is
known about it so far, We neglect also the magnetism of the body by its own lines of force.
"This is a reasonable assumption, since although this self-magnetisin may be important for
highly magnetic substances such as steel, for weakly permeable substances such as rocks, its
effect will be immaterial.

Granting the above, we may cmploy three methods to deal with such problems :—
(ay For 2-dimensional cuses, involving spheres and eylinders, spherical harmo-
nics may be used.
{(h) By the use of Poisson’s Bquation, the solution of a magnetic problem may
be deduced from the gravitational potential of the body.
(¢) Certain special cases may be solved by the use of eonjugate functions, which
lead to very elegant solutions.
2. Numerical values of the constants.—pu,« denote pevmeability and suscep-
tibility of the deposit. The system of units used is clectromagnetic, the magnetic tield
being expressed in terms of 1075T or 4.

i, « are pure numbers. To get a quantitative idea of the anomalies produced by
different types of deposits, « is taken as 156 x 1074, which represents a fair average value for
basalt. In deducing a structural detail from the observed magnetic anomalies, « has to be
treated as an unknown quantity. Even in the same rock type, there are enormous differences
in the values of k. Tt should be noted however, that by changing the value of the susceptibility.
the shape of the profile is not altered. Only its vertical scale is changed in the corresponding
ratio.

T yepreseuts the magnetic foree, and H, V its horizoutal and vertical components
respectively. ¢ denotes the dip.

The curves are drawn on the assumption 7' = 50,000 v, and for values of dip equal to
0°, 20°%, 40°% 60° and 90°. Tt would have been preferable to use the values of 7' appropriate
to each dip, but this was not possible, as the maguetic force for the same values of the dip
varies through wide limits in different parts of the globe. If the actual 7' differs from
50,000 v, the anomalies given by the eurves must of course be changed in simple proportion.

d denotes the thickness of the deposit, z, the depth to its upper surface,
d,=dfz, v, =z,

In the case of the spherical and the eylindrical deposits, z, denotes the depths of their
centres below the ground.

B is the azimuth of the axes of two-dimensional features. The curves are drawn for
B=0° 45° and 90°, the line of traverse being taken perpendicular to the feature, F, Z denote
the components of the magnetic anomaly along the traverse line and in the vertieal direction.
The positive direction of #is in each case shown in the diagram.
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_ 3. Anomalies due to a sphere of susceptibility ~.—Suppose in the firet
instance that the sphere is placed in a field of unitform magnetic force parallel to the x-axis,

Let Vo represent the potential external to the sphere, and I, the potential inside it.
At a great distance.

]'n = — Hr = _ ]’I“']’,

. 2
Hence. Vo at any pommt = — Hr P, + iIL' , 2
I
’
and Vv = Br P,
The two coustants A and B are easily obtained from the boundary conditions

Fo = Vo at r=a
sV, 81
5:) = pu ,,,_;] at r = «
. -
) If R and S represent the radial and transverse componeuts of the maguetic force at a
point, we have , , )
R=— Ve g__ 38V
&y r88
Obviously 4 = — Scos @ — Rsiné = - H :‘ﬂi; . b sin 20,
2% 3 + 4w
\ (1)
"= — Ssind + Rcosf = -“._-. LI (2 cos*@—sin*d).
¥ 3+ dTe
Hence the anomalies due to a sphere placed in a field of potential @ = — Hx— V2 are

a? 4-71'/«:1{4 [
T 3447

(22— %) tan @ — 3az, ). )

S0 0. (2)
3 dmcH s oy .
F= j‘ v :: — [ (2% —22) —3az, tan 1 ]. g

The variations of Z and F are shown in Plate I for the case afz,=1, i.e., when the
sphere touches the ground level. The chart can however be used for other values of a/z, by
diminishing the vertical scale as the cube of this ratio. We notice, that the gradients near
#=0 arc rather steep. For points beyond the periphery of the sphere, the values of F,Z
quickly converge o zero, indicating that a sphevieal deposit has no far reaching effects.

4. An infinite circular cylinder, placed at right angles to the earth’s
field.—The cylinder is placed with its axis along the axis of y, the a-axis being chosen along
the magnetic mevidian. We will consider first the effect of the magnetism induced by the
component H of the earth’s magnetic ficld. Before the introduction of the eylinder, the
field is ¥ = — Hr cos 8.

After the introduction of the cylinder, let the field e

A,cosn8

Vo = — Hrecos@ + %

-
Vi =2, cosnd.
Applying the normal boundary conditions and proceeding as ahove, we get

87« a? sin€c0§0
" 244mwn 77

7z, =-H

4mreal cos?f-—sin?d

r= H ——— .
! 2+4dme ?7?



(38)

The anomalies due to a cylinder placed in & magnetic ficld of potential

V = — (He + Htan i.y) are therefore

H 2 s .
z= _2}:{#” : % [ =220+ (7,7 —2) tan 7]
F drall @ [ (#—2') =20z, tan 7]

T 944w ot

These anomalies are shown in Plates I and 1I.

The curves for spherical and eylindrical deposits are practically identical in character.
The difference is mainly in the absolute values and in the fact that the dccrement with
depth is less rapid in the case of a cylindrical deposit. The vertical scale has to be reduced
in the ratio {«/z,)*. As an example, Figs. 1 and 3 of Plate 1 show that for i=o0, B=o0, the
values of F for the two deposits at the origin are —313y and —470 v respectively for
afzo=1. If the depth be increased three times, the value for the sphere reduces to —11v,
while that for the eylinder is — 52 .

5. An infinite elliptic cylinder..—Consider uext the case of au infinite elliptic
eylinder 2¥/a® + 22/b2 = 1, placed in the earth’s magnetic field. As before, we will first ind
the effect of the component H.

Put  + 1z = ¢ cosh (E+1i7)

x = ¢ cosh € cosn, z = ¢ sinh £ sing;

22 2
=+ =

ctcosh? £ c*sinh*E
a = ¢ eosh a, b = ¢ sinh a define the semi-axes of the ellipse,
£ = a represents the elliptic cylinder. Undistwrbed ¥V = — Ho = —H ¢ cosh € cos 7.
Let Q, = A cosh £ cosh 7,

Q, = —HccoshEcosn+Befcosy

and 1

80, _ 80

Atf =a, 0, = Q,and p 1= %

E 0 1 and g SE - of

Hence Acosha =—Hecosha+Be®
g Asinha = —He¢sinha—-Be™*

A (cosha+psinha) = — He (cosh a+sinha) or 4 = —Hele)
cosha+ usinha

B = [Hc cosh a __HQCOSh_“gc"]ca
cosh e sinha

= He c“cosha.[ wsinh 2 —sinh a]
. cosha+pusinha

_ Hce coshasinha (p-1)
cosha+ psinha

| L]

F=(Betcosn),Z=—  (Be* cosy).

s
Sy

7]

@

Now F= —E(Bc‘f cosn)
Sa

3k

= Be~fcosy 25 “ sing O7
7 e +Be ¢ sing 32



#? sech*E +y° cosech?§ =

«? sec?y — y* cosecty =¢
whence
dE _ x
de  o? tanhE+ y* coth?
and ,dl = — . * o
da « tann + i cot’y
so that .
F = Bet_ ...*008% _pe-t. _ *smngp ]
a* tanh € + y% coth®E 2 tann+ y2 coty
similarly ros P o )
Z = Bety [‘.T‘_:’ ? g _+_J_Tsm17“\:|
Atanhd€é+ y2cothE 2 tandn+ 2 coty
For a circular cylinder ¢ coshf = ¢ sinhé = », ¢ cosha = ¢ sinha = «
I = Be-t X CO87 _Betrsing
R N A sillﬂ_q+ y® cos®ny
cos ) sin®7y
— Be-t 008N ppusiny
x?+y? * cos n
= Be—i cosﬂn_siinf_n]
r r
_ Ha(p—1) eﬂ_f( cos*n—sint gy )
©+1 r
ot = € _ ¢ (cosha+sinha) _ o
cet ¢ (coshfE+sinhE)  »
o= Hao* (p—-1) (cos?n—sinyg)

prs = S €))

This agrees with formula (3) obtained above. Formula (5) can easily be extended
to the case when the cylinder is placed in a field of potential = —( Xz + Yy),

o

6. Inclined block of thickness T <
¢d?:—Suppose a block* of thickness d is inclined
to the horizontal at an angle a and suppose the Z,
block extends to infinity downwards, and on
both sides perpendicular to the plane of the
figure. We will give a complete proof of this
cage as it is of great practical importance. d

/

Fig. 1.

* This case has been treated by Hanlek on pp. 55-60, but all his formule appear to be incorrect.
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Poisson’s Law states that the potentinl of a magnetic element dv (#, y, 2) at a point
P (& #, ) is given by

W= jjjdv{zl el e R {—)}Z 1.

5
In our case A=«H, B=0 and C=xZ  The potential at O due to an elementary
volume at (2, y', 2’ ) is therefore
(KH Lo _ ey i ) de'dy'ds’,
1-') ,]..l .
and the potential of the whole mass is

H’:x.ﬁj [_H_ﬁ;".—)ﬂ—] dedyds’. . . . . o . . o . . o . . (6)

Integrating first of all with respeet to y* we get the contribution of the infinite strip
of cross-section dz'dz’. Along this scction « and z° are constant as o little consideration
will show, and the integration with respect to y' is therefore justifinble. Limits of
y are — o and 4 o,

WegetW=2x”£[.(L"‘“_—’de’dz' e &

Co—a ) +77

Choose a new system of axes x”, 2 as
shown. z

C
Consider a point P whose old and new
co-ordinates are (a’,2) and (2", z”) respec-
tively. B a ”
N !

X P le
] Fig. 2
Obviously 04 = Projection of CB + BP.
ora’ = a” cos a — 7" sin a.
. . (8)
Similarly 7 =z, 4+ 2" sin @ + 2" cos a. }
W = 9 j‘jH(w,,— @”cosa+37"sina) — V(z+a"sina+:"cosa) _,. ,
(vg— 2" cosa 4+ 2"sina)? + (g, + 2" sina + 2" cos a )? dz"ds
= % J‘J(H%—”Vzn) —z” (Hecosa+Vsina) +2” (Hsina—~Veosa), ,. ,
(2" 42, sin a—xy cos a)® + (2”7 +2, cos a +a, sin 2 )2 dz’ds
e (9)

To integrate with respect to 2”, put 2" =2" 42, cos a + 2, sin a,

A4 = (Hw—Vz)—2" (Hcos a+Vsina)—(z cosa+az,sina)( Hsina—Vcosa)
B = (Hsina—V cos a),
¢ = 2"+, 8in a—q, cos a.



"
A+BZ L, ..,
s dx’ dz

2%+ ¢

Then W=2« j

7

A z B
2"J [?t’“’_ITJ"?log (2”’9+02)]dw”

(Hay—Vz) —(zcos atuysina) (Hsina—V cos a)
=2xj.[{ — 2" (Hcosa+Vsina)
2" +2,sin a—a, cos a x
P } Hsina—Vcosa
+_2 x

tan~! y
"+ 2z, 81N a—a, coS @

log {z"'9+(w"+zosiua—mocosa)ﬂ}:ldx” <. 0. (10)

Putting 2"’ = 2"+, 8in a—x, cos a
7
W =2« j ~(H cos a+ Vsin a) tan™! -2 &’

X

+2"j. H sin llz— Vecosa log (2”/94-0:”’2) da"’
Integrating with respect to &’
" "
2z F

W =2« [—(Hcos e+ Vsin a) {x"' tan~! 7t 3 log (z"'2+z"'9)}
1 — "
tHsine—Veosa 2VCOS 2 {a:"' log (2”72 +a"2) — 22" +27" tan‘I%,— :l
. (11)

Now ' 2" = 7" +2,c08 a+a,sin a
2" varies from O to z,

and
therefore z” varies from (z, cos @+, sin @) to (2+3, cos a+z,8in a)
Evaluating between these limits
w . z+z x, 8in a
o= —(H cos a+V sin a) [{mm tan-1 21 % cos a’.”-l-m(, sin
K o
-1 %, CO8 a + x, 8in a 2+32,co8 a+z,sin a
—2"” tan-1 20 L } + { o + %, %
x 2
. 2z, CO8 a + 2, sin a
log [ (2+2,cos a+zx,sin a)? +2”2] — _uz_"— x
log [ (2, cos a+z,8in a)? +a"2] }:I
4 Heina—Vcosa [mm log 2’2 + (242, cos ata,sina)?
2 2 + (2, cos a+x, 8in a )?
xl’l
+2(z+2,cosa+x,sin a) tan™? _
z+z,cos alw,slna
* ° ) (E”l
—2 (2, coB a+x,8ina) tan™? _,f,__.,] e e (12
z,c08 a+x,81na
Now #” varies from 0 to oc,
" " varies from (z,sin a—w, coga) to o<,

therefore r



7))

, 8in a
w . { . ! tan-1 Ztzcosatuy,s
= = a+Vsina z— (z,8in a—ax, cos a) tan -
and 26 (H cos at ) (2 ¢ zg8in @ — &y cos a
. -1 % co8 a+u,sina z+z,c08 ¢+ x;8in a
+ (zpsina—axycosa)tan™t 22— 9 -
2z, 8in @ ~x, cos a 2

tao,8na

. ) . z, CO8 a
log {(z+z0 cos a+ux, sina)?® + (z,sin a—w, cos a)’} + 3

Hsina—V cos a x
' 2

log{(zo cos a+a,sin a)? + (z sin a -, cos a)ﬂ}:l—

(2 sin a— 2, cos a)® + (z+z,cos a+u,sin a)?
31,2
rg*t+ 2

[— 7wz + (zysin a—w,cos a) log

2z, 8in a — x, cos a

. &t -1
+2 (242, co8 a+, sin a) tan -
( 0 0 z2+2z,c08 at+x,sln a

. o Zysina—ux,cos a .
—2 (25 cos a+u, sin a) tan IL—"—] e e e o (13)

2, €OS @+, sin a

Differentiating this expression with respect to a, we have

_F._ (Hcosa+Vsina)cosa {tan

z,8in a— x,cos a z, 8in @ —x, cos @

1 z2+z,cosata;sina _tan-1 % ©08 a+ x,sin a}
2x

z,sina—x,cosa —tan-1 % sina—a, cosa)
z4+z,cosa+x,sina z, cOs a+, sin a J

— (Hsina—-Vcosa) sin a {tan‘l

+ (Hcosa+ Vsina)sin a {loo- (247, cos a+a,sin a)® + (2, sin a—a; cos a)?
2 ®  (zycos a+x,sina)? + (z sin a—z, cos a )?

+ (Hsina—Vecosa) cosa {100 (242, cos a+ax,sin a)? + (z, sin a —x, cos a)f}
2 ° (29 cos a+a,sina)? + (z sin a—.,cos a)?
A B
A similar expression holds for Z.

Putting z=d and a=o0 in equation (13) we obtain the potential due to a horizontal
slab of thickness d.

w 1 2 o 4+ 2
i H[d + 2, (tan 1 T: —tan 1%) + %log (zp* + 2e?)
_ dts log{(d+z‘,)2 + @y }:I + L4 [—'ml—.l',) log o + (dtz,)
2 2 P+ 2,0
-1 T WX,
* o tanT 20 2 (44z,) tml—l_ﬁ] S 3
F__ 1 3w
2« 2¢O,
= H [tﬂll_l Ao _ tan-! i+_z_”:| + K log M {16)%
Xy £y 2 4zt
z_ __1 3w
2« 2x 8z,
H 22+t V K g
= " log —0 A 2tan-t N 9 gy -1-'_n>' =%
3 g ot d) o0 2 ( an . an Ttz [

although an identical methad has been used
magrnetie potentinl I on page 56 of his book is

_' Thgse formulw are different from those obtained by Ilaalck,
In their derivation. Hnalck's evaluation of the expression for the
Ingorreot.
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We see that the working of these 2-dimensional problems with the help of the
gravitational potential is very laborious. The computa-
tions become much simpler, if the effect of each face of z
the magnetic body is computed separately. Consider a l
plane of width b, extending infinitely in the direction

perpendicular to the plane of the paper, the intensity of E /P—
magnetization being I per unit length. The attraction 7
of the infinite strip of width da at Cis 2 Idx/r along PC. Iy 7
Resolving along the horizontal and vertical directions, and ///
integrating throughout the total breadth of the plane, b
we obtain the very convenient expressions '_L
B dx A
Z=21I4¢, F = 2 I log ry/r, where ¢ = / APB. .
Fig. 3

Applying these formula to the boundaries of Fig. 1, we get without difficulty the expressions
for F and Z.

This method is justifiable, because by applying Green’s Theorem to Poisson’s Equation,
we see that for a uniformly magnetized body the integration can be reduced to a surface
integral along the boundary of the magnetic body, the surface density being I cos 8, where &
is the angle between the direction of magnetization and the normal to the body. The
volume density can be taken to be nil.

7. Simple geological fault, extending to a great depth.—A rectangular slab,
infinite in one linear direction, and also of infinite extent in both directions perpendicular
to the plane of the paper. This is equivalent to a simple geological fault, extending to a
great depth since the continuous magnetic material below CD in Fig.4 will cause no
anomaly.

From the preceding paragraph. we sce that

Fan + Fony = =2 Vlog refra
Fae = + 2« H (¢ac)
Zac = -9« H ]O(.{ l'u;("\

Zaw 4 Zoy = =26V (dac)



(9)

Hence
. 2+ (zp+d)? 0 ( o g & )
= — p , YT 0T 2] 4 3 H | tan™! — — tan cos B
F «H tan ¢ log e py ¥ d

= —«H tan 1 log. () + 2k H (tan‘l.w — tan~!-

z?+1 ) 608 ﬂ]

Ly
1+ (lr

k . . (19)
= —«H cos B log. }rn‘_t:(:f—-}-l'—di —2k H tan ! (tan“.u,- — tan~! lj_'dr)

Plates IIT and IV exhibit the curves for d, = 20, and 1000.

Since the effect of an infinite plate of finite thickness, having opposite polarity on
its two faces is nil, we see that the above formule also hold for a deposit of the form shown

-

Fig. 5.

8. Simple geological fault, extending to a finite depth.—This case is easily
deducible from the formulee in para 7.

The results for some concrete cases are
shown in Plates V and VI. The deposits in
Plate VI ave not veally simple faults, but can _

be reduced to them by the addition of a rectang- = - - -
ular slab. ; \\\ \\\: y/

Fig. 6.

9. Inclined slab.—A slab, extending infinitely in both directions perpendicular to
the plane of the paper, with one face sloping at an angle a.

P
— — — A
+ + + D
7.

FAB + l"cu = -2 Ilog )'c/)'u

Zap + Zep = —'2I¢uc

= =21 [tm\“ ontd tan~! —zi]
r—dcota >

-~
I

—2¢ Vlog refrp + 2¢ T sin (40 —a) cos a log re'ru
— 2¢ Tsinasin (40—a)[¢].
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Fo_ —d cota )? dRE (.
or T = - l:]og VAT ::;)l:l :(;(Zu‘l' ) ] [sin 7 — sin (i—a) cosa]
—sinasini—-a [¢].
= —[sin i—sin{—acosa] []0g \/Mi)it,(l"'dr)f
. Vi  (20)
—sina sin (40—a) [¢].
Z sin (i — a) sin a log \/_(Vrz',.—d,. cota)® + (14d,)
2 T \/1+a',.‘~’

— [sint—=sini—acosa] [¢].
x,—d,cota
14+d,
Plate VII gives the anomalies for different values of a for 1=20° and d,=20,

It also shows the effect of varying the azimuth.
Plate VIII exhibits the anomalies for e =2°, d, =20, 8=0 for different values of the dip.

10- Vertical Dyke.—Vertical dyke with breadth 2, having an infinite vertical
P

where [¢] = tan! #, — tan~!

extent.

Fig. 8.

F= 2cHtan i loge vs/7a —2¢ H [¢ ] cos B
N € 1)
Z = 2«Htan1 [¢] +2« H log, rafra cosﬁ}

These formulz also hold for a
deposit of the form shown in Fig. 9.

The anomalies due to such a 7 / //
deposit are shown in Plates VIII and AV

IX for b,=1, and b,=1000.

T

Fig. 9.
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11. Block of thickness 4, width 2 5.—Wae will next consider a block of thick-

ness d, depth z,, width 2b, extending infinitely in both directions perpendicular to the plane

of paper.
’

P F
//7/ >
; + + + +/;

Fig. 10.

F= —2« H tan ¢ log. % +2¢ H ( . BPD— £ APC) cos B
n C

(22)
%, = —2« H cos 3 log. :‘_;D_ —9% H tan { (/. CPD — / APB)
B I'C

Plate X shows the anomalies for d.= 10, h,=10 for different values of dip and Plate
XI for d,=1000, b,=1000 and d,=100, b,= 100, tor dip =0° and +0°.

12. Use of conjugate functions.—We will finally give an example of the use of
conjugate functions, by which we can get solution of one magnetic problem from another
lnown one by a transformation of the type w+iv = f(a+iy). Uhrig and Schafer* have
solved the following problem by this method. An infinite cylinder of permeability x has a

35

— gt

¢ . . . .
sinusoidal boundary as given hy y = cos™' — i It is placed in a uniform field r

_L,_.h
inclined at an angle a to it. Find Z and ¥ due to the induced magnetism.

The transformation needed to solve this problem is w=¢". It might be remarked
however that for all practical purposes bearing in mind the uncertainty inherent in magnetic
methods, the cases 1 to 11 dealt with above, should suflice. With sufficient approximation,
the sinusoidal boundary in the above case may be represented by plane faces AC, BD. The
effect of the body as shown in Fig. 11 is easily calculable hy the above formulw.

Fig. 11.

13. Practical use of the curves.—The curves of this paper can be put to several
uses.  From them, we can obtain either the effects of varying the thickness of a deposit of
given depth, or of varying the depth keeping the thickness tixed. As an example, consider
the case of a simple horizontal slab. Suppose, we are given that at a place, where dip is 20°
the thickness of the deposit is } mile, and we want to compare its effects, when placed at
depths % mile, %5 mile and } mile respectively. Plate III, Figs. 3and -t yield this informa-
tion easily. As z, changes, the horizontal scale alters in the corresponding ratio.

¥ Ulrig and Schafer, “ Gerl. Beit, Zur Geophysik ™, Band 49, p. 129.
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‘For example in Fig. 4, if 2z, = } mile, the horizontal scale is 1 mile = 0:1 inch.
For z, = 75 mile, the scale becomes 2z mile = 0:1 inch, and so on.

If z,is fixed and d only is changed, then the horizontal scale remains unaltercd.
Thus, let z,=1 mile and d =1, 10, and 20 miles. The horizontal scale in Tig. 4 is 1 mile
= 35 inch in all the three cases. We can see at a glance, how the maximum values of I, Z
increase with thickness.

The curves also énable one to judge the effect of different orientations.

Formule on similar lines can also be developed for the case when the two-dimensional
deposit is not infinite in both directions perpendicular to the paper. As an example consider
the effect of a vertical step, which extends to infinity in the positive direction of the y-axis.
Suppose the line of traverse is at a distance ¢ along the y-axis from its finite end. The effect
of such a block for various values of ¢ can be worked out, although the integrations become
rather cumbrous. It might be noted however that in this case, there will be a horizontal
component of disturbing force both in the direction of the wx-axis, as well as in the direction
of the y-axis.

We will give the formula for the case of a plate of finite breadth b, as shown in
Fig. 12.

Fig. 12.

2’ *2 Icd

7 = J. ,I—d, dx j A
@ 2+ d? 0 (a4 d*) VE+ O+ &

7, ri L __g

P, = —

Y X \/ 24+ d?

Za €
I o 2 Icz

F, = j " _dx + " = da
2, @+ d? v VEFEVE + &+ &

These are all standard forms of integrals, which can be evaluated without difficulty.

The application of these formulie to the cases discussed in paras 1 to 11 is obvious.
The formule however become rather complicated.

14. General remarks.—The magnetic method for locating embedded deposits is
burdened with many uncertainties, as magnetisin is very liable to small changes in the
chemical composition of a substance. It is well-known that rocks of the same type show con-
siderable variations fromn one specimen to another. The presence of permanent magnetism
may also obscure the problem. Conclusions can however be made more reliable if the body
producing the anomaly is close to the swrface, so that samples can be collected, and tested for
permanent magnetism and changes of susceptibility, which can then be allowed for.

Tt will be seldom that magnetic survey or any other geophysical method can Dy itself
lead to definite couclusions regarding concealed structures, but cach different method
( magnetie, seismic or gravimetric) provides evidence of a different kind, and a combination
of the different lines of evidence will often lead to conclusive results.

15. Summary.—TFormuli for magnetic anomalies produced by induced magnetism
in difterent forms of magnetic deposits are given. The variations of these anomalies for
traverses along different azimuths have heen shown graphically for different depths of the
deposits, taking the numerical value of the earth’s magnetic force as 50,000y.

G.B.—DP.0,—1.%, 120 —1)-6-38—350 bks.
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